Surface Modification of Biomaterials: A Quest for Blood Compatibility

نویسندگان

  • Achala de Mel
  • Brian G. Cousins
  • Alexander M. Seifalian
چکیده

Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomaterials in Cardiovascular Research: Applications and Clinical Implications

Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. ...

متن کامل

Polystyrene surface modification using excimer laser and radio-frequency plasma: blood compatibility evaluations

Biomaterial surface modification is an efficient method to improve and control blood component-material interactions. In the present study, two different methods (ArF excimer laser irradiation and radio-frequency (RF) plasma treatment) were applied in separate procedures to create a vast range of physicochemical characteristics on the surface of polystyrene (PS) and investigate their effects on...

متن کامل

Surface modification of ZnO nano-particles with Trimetoxyvinyl Silane and Oleic Acid and studying their dispersion in organic media

Zinc oxide nano-particles with the average diameter of about 25 nm were modified with different mole ratios of trimetoxyvinyl silane (TMVS) and oleic acid, as coupling agents, in order to modify their surface properties and render them more hydrophobic. Then, dispersibility of the surface modified nano-particles was examined in some monomers with different levels of hydrophobicity, including me...

متن کامل

Surface modification of ZnO nano-particles with Trimetoxyvinyl Silane and Oleic Acid and studying their dispersion in organic media

Zinc oxide nano-particles with the average diameter of about 25 nm were modified with different mole ratios of trimetoxyvinyl silane (TMVS) and oleic acid, as coupling agents, in order to modify their surface properties and render them more hydrophobic. Then, dispersibility of the surface modified nano-particles was examined in some monomers with different levels of hydrophobicity, including me...

متن کامل

A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity

Beside biomaterials' bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012